Apply now

Artistic Data Science - AI Sings

Are we ready for our first robot performer fan-club? Read on and see for yourself!

Artistic Data Science - AI Sings
Share article

Welcome to Part 2 of my journey through the artistic side of Data Science. Here are
Part 1 ICYMI!


Music is life. I've believed that for as long as I can remember. Music can make or break a mood, make you more productive, make you relax, make you lift more at the gym, you name it!


That's why AI-made music is particularly interesting to me. Let's have a look at some of the amazing machine creations out there. 🎻

Google is Bach

Keeping with traditions and starting with Google.


For Bach's 334th birthday, Google's Magenta project built the famous Bach Doodle - a mini game which would harmonise any user given input in the style of Bach. What's behind the doodle? The coconet model.


Magenta team built and trained the coconet on 300+ chorale harmonies written by Bach. The model randomly erases notes and then uses a Convolutional Neural Network to regenerate them again.


The cool thing about coconet is that it doesn't need to follow a chronological order to produce notes, unlike many other machine learning models dealing with music. It can generate notes at any point of a composition, and continuously!


In fact, that's exactly how coconet works internally - it repeatedly generates a harmony, gets rid of unfitting notes, then generates new ones in their place. So the model loops until it believes that all notes in the harmony are a good much and can do Bach justice 🎼


☝️Coconet repeatedly erasing and rebuilding it's own harmony


Make sure to give coconet a try yourself!

Play something for us, Clara 🎹

Clara can play the piano. I've heard her play jazz, classical and chamber music myself. I've just never seen Clara.


That's because Clara is a Long-Short Term Memory (LSTM) - a Recurrent Neural Network that is great at recognising patterns in sequences, not just single objects.


Christine McLeavey Payne created Clara using midi music files and the FastAI library. One of her biggest breakthroughs was viewing music as a language. Same as machine learning models that work with text prediction when you type, Christine built Clara by turning her music library into text and feeding that to the neural network.


This gave Clara the ability to generate music both "chordwise" and "notewise" - imagine that as being able predict not just character by character, but word by word. That gives Clara much more "intelligence" when creating music, hence the LSTM that can make decisions both on recent memory (one note) and long-term memory (what is the chord being played). 🎶


Make sure to watch Christine's presentation of her results!

Put your circuits up! 🙌

This one is one of my personal favourites - the AI DJ. Created by the cool Japanese collective Qosmo, this chill looking bot can work side by side with a human DJ by selecting music, beatmatching the songs and watching how is the crowd reacting.


The AI starts with a very sophisticated music selection process - three neural networks working together, inferring the drum beats, instruments and genre of the song the human DJ is playing. After the AI figures out the current song, it looks at the nearby cluster of other fitting music and selects one of those.


A human then places the vinyl on the turntable, so no worries, we still have our jobs yay! 💿


The AI DJ then matches the tempo of the two songs. Qosmo built a model using Reinforcement Learning for that - the machine learning model has a "target score" and it keeps doing trial-and-error learning until it is able to beat that score.


Finally, when the song is matched, the AI (like any good DJ) starts watching the crowd's reaction - using motion sensors, deep learning and the OpenPose library to detect the amount of movement in the crowd. If the movement is below the designed threshold, the AI DJ "pumps it up" by adding some extra sounds to the song!


Make sure to check out Qosmo's project and especially the performance Vimeo video! 🎧

Bonus: Machines listening to music???

This is the piece that started my journey into artistic data science.


It's not exactly "AI singing", but it is uniquely beautiful and you must have sound on while you experience what Xander Steenbrugge created.


Neural Synesthesia
is the marriage of data science, sound and visuals, co-written by human and AI. Xander trains deep learning models on a specific drawing style, until the model is able to produce its' own artworks - similar to the training data, but still totally unique.


Xander then processes music of his choice to extract features from it that a machine can understand. The deep learning model then listens to the music and expresses itself in painting. Yes, the AI uses input from the music to produce original output in a visual form, and it's absolutely beautiful.



Headphones on. Head over to the Neural Synesthesia Vimeo channel for more porn for the senses. 😍


----


Thank you for reading! I would love to hear what you think, so feel free to ping me or leave a comment.


If you are working with music, production, creative projects and have a knack for data, do check out the Le Wagon Data Science Bootcamp. In 9 weeks you can start your journey to build the next AI musician! 🎙

Want to know more about Le Wagon's bootcamps?
Keep reading
News

Curated list of Shanghai-based programs for entrepreneurs

Shanghai, as a major global business hub with a thriving startup scene, is home to many great entrepreneurial programs. In this article, we will curate some of the best communities for the creative and adventurous minds.

Learn to code

Web Development Bootcamp vs Data Science Bootcamp

Interested in joining the Le Wagon community but not sure which bootcamp is best for you? We wrote this blog to help you decide!

Graduate stories

How to bring your ideas to life : an entrepreneur's journey from learning how to code to raising $400K

Jose joined Le Wagon Montréal’s Spring batch to accelerate Arkangel, a startup he launched in 2018 to help a family member fight a chronic disease. Jose developed his initial MVP (minimum viable product) and discovered he still needed additional technical skills to propel his company to the next level. Read his story.

Are you ready to learn coding?

We are in 39 cities worldwide.