In 9 intensiven Wochen in Nantes wirst du zum Data Scientist. Von Python bis zu Machine Learning lernst du alle Skills, die du für eine erfolgreiche Karriere in einem Data Science Team brauchst.
Bei bestimmten Kursen in Nantes kannst du auch remote mitmachen. Nach deiner Bewerbung werden sich unsere Admission Manager schnell bei dir melden und dir alle wichtigen Informationen geben.
Unser Vollzeit Data Science Kurs in Nantes gibt dir in nur 9 Wochen alle Skills für einen erfolgreichen Start in einem Data Science Team. Von Pandas zu Deep Learning: nach dem Kurs kannst du komplexe Daten überprüfen, bereinigen und daraus nützliche Erkenntnisse ziehen. Du setzt Machine-Learning-Modelle von der ersten Codezeile bis zum Produktionsumfeld ein und arbeitest in Tech-Teams mit den modernsten Tools.
In unserem Kurs lernst du Schritt für Schritt alle wichtigen Skills eines Data Scientists. Du beginnst bei dem grundlegenden Daten-Toolkit in Python und endest mit der vollständigen Implementierung und Bereitstellung von komplexen Machine-Learning-Algorithmen.
Unser Data Science Kurs ist ziemlich intensiv. Um Zeit zu sparen und allen einen guten Start zu ermöglichen, müssen alle Teilnehmer eine Online-Vorbereitungsarbeit vor dem Kurs vervollständigen. Diese dauert ungefähr 40 Stunden und behandelt die Grundlagen von Python (Voraussetzung für den Kurs) und einige mathematische Konzepte, die Data Scientists täglich anwenden.
Du lernst: Programmieren in Python, den Umgang mit Jupyter Notebook und den Einsatz von Python-Bibliotheken wie Pandas und Numpy zur Erforschung & Analyse von großen Datensätzen. Du sammelst dabei Daten aus verschiedenen Quellen wie CSV-Dateien, SQL-Abfragen zu relationalen Datenbanken, Google Big Query, APIs und Scraping.
Wir befassen uns damit, wie man gute Fragestellungen formuliert und diese mit den richtigen SQL-Abfragen beantwortet. Dieses Modul behandelt zunächst Schema-Architekturen und taucht dann tief in die fortgeschrittene Manipulation von SELECT ein, zur Extraktion nützlicher Informationen aus eigenständigen Datenbanken oder mit einer SQL-Client-Software wie DBeaver.
Präsentiere deine Daten anschaulich und leicht verständlich mit Visualisierungen in deinem Notebook. Du plottest Data-Frames mithilfe von Python-Bibliotheken wie matplotlib und seaborn und ziehst nützliche Erkenntnisse aus deinen Datensätzen.
In diesem Teil befassen wir uns mit den mathematischen Prinzipien, auf denen alle Bibliotheken und Modelle in diesem Kurs aufbauen. Wir machen uns vertraut mit den grundlegenden Konzepten der Statistik und Wahrscheinlichkeit (Mittelwert, Varianz, Zufallsvariablen, Bayes-Theorem...), sowie mit Matrixrechnungen (ein Kernstück der numerischen Operationen in Bibliotheken wie Pandas und Numpy).
Du lernst, wie du ein Python-Repository mit objektorientierter Programmierung strukturierst um deinen Code zu bereinigen und wiederverwendbar zu machen, wie du die Vorbereitungsphase eines großen Datensatzes meisterst, und wie du auf der Grundlage von multivariaten Regressionsmodellen aussagekräftige statistische Ergebnisse identifizierst und interpretierst.
Data Analysts müssen klar mit einem nicht-technischen Publikum kommunizieren können. Du lernst, wie du deine Ergebnisse wirkungsvoll präsentierst und lässt diese anhand von Kosten-Nutzen-Analyse direkt in strategische Entscheidungen einfließen. Du teilst deinen Fortschritt mit allen Stakeholdern und vergleichst deine Ergebnisse im Team.
Als nächstes lernst du, wie du deinen Datensatz mit Preprocessing-Techniken wie der Vektorisierung untersuchst, bereinigst und vorbereitest. Dann machst du dich vertraut mit linearen und logistischen Regressionen, den klassischen Modellen des Supervised Learnings. Du löst Vorhersage- und Klassifikationsaufgaben mit scikit-learn in Python und ziehst dabei Lernalgorithmen wie KNN (k-nearest neighbors) zur Hilfe.
Implementiere Trainings- und Test-Phasen und vergewissere dich damit, dass dein Modell auch auf unbekannte Daten angewandt werden kann und erfolgreich in der Praxis funktioniert. Du lernst, wie du Overfitting mithilfe von Regularisierungsmethoden verhinderst und die richtige Verlustfunktion auswählst, um die Genauigkeit deines Modells zu stärken.
Du bewertest den Erfolg deines Modells, indem du definierst wonach optimiert werden soll und indem du korrekte Fehlermetriken bestimmst. Du verbesserst die Leistung deines Modells mit Validierungsmethoden wie der Kreuzvalidierung und der Hyperparameter-Abstimmung. Zum Schluss lernst du SVMs (Support-Vektor-Maschinen) kennen, eine leistungsstarke Methode für das überwachte Lernen.
Jetzt kommen wir zum unüberwachten Lernen. Wir implementieren Methoden wie PCA zur Reduzierung der Dimensionalität, sowie Clustering zur Entdeckung von Gruppen in einem Datensatz. Außerdem lernst du Ensemble-Methoden kennen, bei denen mehrere Modelle wie Random Forest oder Gradient Boosting zur Leistungssteigerung kombiniert werden.
In diesem Teil lernst du die Magie des Deep Learning kennen. Wir befassen wir uns mit der Architektur neuronaler Netze (Neuronen, Layers, Stacks) und ihren Parametern (Aktivierungsfunktionen, Verlustfunktion, Optimierer). Mit diesen Elementen entwickelst du neuronale Netze komplett eigenständig (vor allem für Bilder, Zeiten und Texte) und lernst dabei alle wichtigen Methoden und Tricks kennen, die das Deep Learning ausmachen.
Du steigst tiefer in die Computer Vision ein und arbeitest mit konvolutionären neuronalen Netzen, mit denen du das meiste aus Bildern herausholst. Du setzt Daten-Augmentation ein, verbesserst die Generalisierung deines Modells und arbeitest mit fortgeschrittenen Methoden und modernen Architekturen wie Transfer-Lernmethoden.
Mach dich vertraut mit der Verwaltung von Daten und Texten (Wortfolgen), indem du sie in entsprechende Eingaben umwandelst. Du setzt rekursive neuronale Netzwerken ein, um zukünftige Werte vorherzusagen und eine natürliche Sprachverarbeitung durchzuführen.
Entdecke die Keras Deep Learning Bibliothek, mit der du einfache Prototypen erstellen kannst und gleichzeitig die Flexibilität hast, dein neuronales Netz genau zu justieren. Außerdem setzt du Google Colab ein, um Rechenzeiten dank dezidierter GPUs deutlich zu beschleunigen.
Du wechselst vom Jupyter Notebook zu einem Code-Editor und lernst, wie du Projekte für eine schnelle und sichere Iteration aufsetzt. Du wandelst dein Machine-Learning-Modell in ein Modell mit einer robusten und skalierbaren Pipeline um und setzt dafür die sklearn-Pipeline mit Encodern und Transformatoren ein.
Der komplette Aufbau eines Machine-Learning-Modells erfordert ein hohes Maß an Datenvorbereitung, Experimenten, Iterationen und Anpassungen. Wir zeigen dir, wie du Feature-Engineering und Hyperparameter-Abstimmungen durchführst und das bestmögliche Modell entwickelst. Dafür nutzen wir eine Bibliothek namens MLflow.
Zum Schluss zeigen wir dir, wie du deinen Code und dein Modell in einem Produktionsumfeld bereitstellst. Mit der Google Cloud AI Plattform kannst du dein Modell trainieren, verpacken und in der ganzen Welt einsetzen. Außerdem nutzt du ein Docker-Umfeld, um deine eigene RESTful Flask API zu implementieren, die du an jede Front-End-Schnittstelle anschließen kannst.
Ihr verbringt die letzten zwei Wochen als Gruppe und arbeitet gemeinsam an einer spannenden Data Science Herausforderung! Ihr lernt, wie ihr effizient als Team mit einem gemeinsamen Python Repository und Git flow kollaboriert. Dabei nutzt ihr eine Mischung aus eigenen Datensätzen (falls ihr welche von euer Firma / NGO habt) und open-data Repositories (Regierungsinitiativen, Kaggle, etc.). Die Gruppenarbeit ist eine großartige Möglichkeit, alle gelernten Tools und Methoden anzuwenden und wird dir zeigen, wie eigenständig du bereits arbeitest.
Von Vorlesungen am Morgen zu Vorträgen am Abend - jeder Tag ist spannend!
Schnapp dir einen Kaffee und starte den Tag mit einer spannenden und interaktiven Vorlesung, bevor du das Gelernte in die Praxis umsetzt.
Gemeinsam mit deinem Buddy für den Tag löst du Programmier-Aufgaben mit der Unterstützung unserer Lehrer.
Programmieren lernen kann intensiv sein. Am Nachmittag entspannt ihr euch bei einer gemeinsamen Yoga-Klasse.
Während der Live-Code-Session sprecht ihr über die heutigen Übungen und bekommt eine Übersicht der anstehenden Themen.
Lass dich inspirieren und erhalte wertvolle Tipps von erfolgreichen Gründern bei unseren exklusiven Talks & Workshops.
Unser Data Science Kurs ist erst der Beginn deiner Reise. Nach dem Kurs gehörst du zu einer weltweiten Tech-Community und hast Zugang zu unserer Online-Plattform, wo du immer weiter lernen und wachsen kannst.
Erhalte Tipps und Ratschläge von erfolgreichen Data Scientists & Datenanalysten, Zugang zu exklusiven Jobchancen und Freelance-Stellen von Gründern und Entwicklern.
Nutze jederzeit nach dem Kurs unsere Online-Lernplattform: hier findest du alle Data Science Vorlesungen, Screencasts, Übungen und Lernkarten.
Werde ein Teil unserer globaler Community aus 9977 Alumni, die im Bereich Data Science arbeiten, sowie viele weitere Gründer, Entwickler und Produktmanager auf der ganzen Welt.
Unsere unterschiedlichen Kurse gibt es in 40 Städten auf der ganzen Welt: wohin du auch reist, du gehörst zur Le Wagon Community!
Nach dem Ende des Programmierkurses profitierst du von unserer großartigen Karrierehilfe. Wir vernetzen dich mit den besten Recruitern und bringen dich mit relevanten Alumni in Kontakt.
Nutze unseren Alumni-Guide und starte erfolgreich in deine neue Data Science Karriere: bau dein Tech-Portfolio weiter aus, finde deinen Traumjob und lass dich von unseren 9977 Alumni unterstützen.
Mach mit bei unseren vielen Jobmessen und Networking Events, triff die besten Tech-Firmen und erhalte Angebote von Recruitern für spannende Datenjobs.
Unsere Alumni sind ständig in Kontakt mit neuen Teilnehmern: sie erklären dir, wie sie ihre Jobs als Data Scientists, Datenanalysten und Dateningenieure gefunden haben.
Unsere lokalen Teams sind regelmäßig in Kontakt mit unseren Alumni und Recruiting-Partnern und vernetzen dich jederzeit mit relevanten Personen.
Die besten Firmen arbeiten mit Le Wagon zusammen und stellen unsere Alumni als Data Scientists, Datenanalysten und Dateningenieure ein.
Le Wagon hat 1857 Bewertungen mit einem Durchschnitt von 4.98/5 und ist damit laut Teilnehmern der beste Programmierkurs weltweit auf Switchup! Diese Bewertungen machen uns unglaublich stolz und glücklich, denn dahinter stecken tausende Menschen aus der ganzen Welt, denen der Kurs neue Möglichkeiten eröffnet hat. Wir freuen uns riesig darüber, dass sie nach dem Kurs erfolgreich und eigenständig Programmieren können, den nächsten Karriereschritt gehen und eigene Startups gründen.
Jede der 1857 Bewertungen zählt und hilft uns, unsere Kurse konstant zu verbessern und das höchste Niveau zu bieten. Die vielen positiven und enthusiastischen Kommentare sind der ultimative Beweis dafür, dass wir in 40 Städten weltweit die beste Tech-Ausbildung für unsere Teilnehmer bieten.
Der nächste Vollzeit Data Science Kurs in Nantes beginnt am 3 Mai, 2021